# Subtidal and intertidal habitat mapping of Motukaroro Island 2006 Vince Kerr<sup>1</sup> and Roger Grace<sup>2</sup> For the Department of Conservation Northland Conservancy, Whangarei June 2006 <sup>2</sup>Roger Grace C/- PDC Leigh, Auck. 1241, NZ Phone: 09 422 6127 Email: gracer@xtra.co.nz <sup>1</sup>Vince Kerr PO Box 4267 Kamo, Whangarei, NZ Phone: 09 435 1518 Email: vincek@igrin.co.nz **Keywords** Motukaroro, habitat mapping, aerial photography, habitat map, biotypes, baited underwater video # **Table of Contents** | Client's Brief | 3 | |-------------------------------------------------------|----| | Executive Summary | | | Introduction | | | Review of previous work | | | Methods | 5 | | Habitat Classification and Mapping | | | Results | | | Habitat map | | | Habitat descriptions | | | Discussion | 19 | | Habitat map | | | Recommendations | | | Acknowledgements | 20 | | Map 1 Sonar data points, tracks and video drop points | 20 | | Map 2 Motukaroro habitat map | | | Map 3 2006 Motukaroro aerial photo composite image | 20 | | References | 21 | | Appendix 1. Sonar Data Points | | | Appendix 2 Video Drop Data Points | | #### **Client's Brief** - Review information sources relating to historic research on marine natural features and ecology of the Motukaroro study site. - Source and review available bathymetric data and historic aerial photos for the study site. - Produce a current set of aerial photos for the shallow areas of the study area as required for mapping in digital format and suitable for geo-referencing in ArcGis. - Carry out on-water survey where required using geographically referenced sonar, drop video, and diving methods to augment sub-tidal habitat information not obtainable from aerial photography. Data must be sufficient to map rocky reef edge at a scale of 1:5,000. - Produce GIS habitat and biotype maps in collaboration with Information Services, Northland Conservancy. - Provide a report for the project which includes an executive summary, introduction, methodology, habitat classification, map sets, discussion and conclusions. The report must: discuss accuracy and validity issues associated with the investigation and output of habitat maps. ## **Executive Summary** Marine biological investigations of Whangarei harbour were reviewed, specifically around Motukaroro Island. An inter-tidal and sub-tidal habitat mapping investigation, was selected for an initial investigation focus to enable future study of changes to habitats and organisms arising from the introduction of marine reserve designation. A habitat investigation and mapping of the Motukaroro area was successfully carried out. The survey was done using a combination of drop video, side-scan and single beam sonar techniques. Aerial photographs were used to map shallow (< 10 m depth) habitats. A map of physical and biological habitats was produced at 1:4,000 scale covering an area of approximately 75 ha. Major habitats recognised and described were: - Inter-tidal habitats, including sandy beaches, gravel and boulder beaches, and solid rock shores. Mixed sand and rock. - Sub-tidal habitats, including large areas of sand, gravel and cobble, as well as hard rock bottom. The rock substrates were occupied by biological assemblages forming a mainly depthrelated sequence from shallow to deeper water, including shallow mixed weed, kina barrens, *Ecklonia* kelp forest, and deep reefs. Some of the more sheltered shallow rock areas were occupied by tangle-kelp forest. Significant areas of mixed rock and sediment substrates occurred at various depths and are important ecologically to this area. It is recommended that the report and maps should be widely used to promote awareness within the community of the marine values of Motukaroro, and to foster involvement in the establishment of the Whangarei Harbour marine reserve. #### Introduction Motukaroro Island is situated near the mouth of the Whangarei Harbour. An area of some 25 ha is to be established by gazettal as a marine reserve in 2006. The area is characterised by shallow rocky reef extending out to soft sediments of shell debris and sand and course sands. The island has a deep hole off the western end extending down to 30m depth. The reserve area is affected by strong outgoing tidal currents carrying at times high silt loads, and strong incoming tides bringing oceanic water and a regular supply of coastal marine organisms to the island and surrounding reefs. Eddy currents created by tidal currents around the island have resulted in unique conditions. As a result the island's habitats and species assemblages have been described as both unique and highly diverse. The history of biological investigation at this site is briefly reviewed in the next section. Motukaroro Island and its immediate vicinity is also a candidate site for biosecurity monitoring based on its future marine reserve status, diverse habitats and its proximity to the Marsden Point industrial complex. This study has begun work to establish biological baseline information which can be used in the future to test the effects of marine reserve establishment at this site. In this first phase of work we have completed an inter-tidal and sub-tidal habitat map. It is a well established scientific norm to collect as much baseline information in a monitoring program before an impact or manipulation experiment or management regime is established (Kingsford & Battershill, 1998). In this case the change or manipulation is the establishment of a fully protected marine reserve. Once pre-manipulation baseline data has been collected, monitoring for change over time and comparison with the pre-treatment baseline data is possible. In this case we have chosen to do an inter-tidal and sub-tidal habitat map to facilitate understanding of the spatial arrangement of habitats in the area. Habitat mapping greatly assists species monitoring design and allows measurement of change in habitats over time. Habitat maps can be re-surveyed and drawn at a future date which allows for changes over time to be quantified. (Kerr & Grace, 2005). #### Review of previous work Early habitat mapping investigations were completed for the lower harbour area by Bioresearchers (1976) and followed by Mason and Ritchie (1979). In the mid 1980's the Northland harbour board (1984a, 1984b, 1986) carried out studies of marine values at Motukaroro and at other similar sites around the harbour entrance areas. These studies provide some basic rocky reef zonation information, and preliminary species lists. Limited studies were also done of soft sediments and soft sediment species assemblies in areas near Motukaroro. More recently rocky reef algal zonation and fish species assemblies were investigated by Brook, (2001, 2002). These historic studies were reviewed and species lists combined and compiled in the Kamo High School Whangarei Harbour Marine Reserve Application (2002). During the process of evaluation of the marine reserve application, the Department of Conservation contracted NIWA to review all past biological investigation work for the Harbour. This report (Morrison 2003) is valuable in that it brings historic and recently (2003) unpublished NIWA work together in one report. This body of work is reviewed and updated in a northland wide review document (Morrison 2005), produced by NIWA which is useful to allow some basis to compare information on Whangarei Harbour to the rest of Northland. Figure 1. Motukaroro, Whangarei Harbour, showing the study area. #### **Methods** #### **Habitat Classification and Mapping** The habitat classification used in this study is based on work by Ballantine et al. (1973), Ayling (1978), Ayling et al. (1981) and Grace (1981; 1983). The method adopted in this study closely follows the classification and methodology adopted in the Kerr and Grace Mimiwhangata habitat mapping report (2005). The authors completed further habitat mapping of Doubtless Bay (Grace & Kerr, 2006). The habitat descriptions generally use a combination of physical substrate characteristics and groupings of habitat-forming macro-algae. Qualitative habitat descriptors were used to enable rapid mapping of the study area using a combination of sonar and video methods, rapid sediment sampling, diving, and aerial photography. Table 1 compares historic habitat classifications, ranging from the earliest work of Ballantine et al. (1973) at Mimiwhangata to a very recent classification (Shears et al. 2004), and includes the classification adopted for this study. The Shears et al. (2004) study examined the degree of concordance between qualitative habitat descriptors and quantitative species data from various locations along the northeast coast. They concluded that qualitative habitat descriptors for rocky reefs do accurately define biologically distinct species assemblages and are therefore an efficient means of mapping subtidal rocky reef habitats. It is worth noting that Shears et al. (2004) describe five additional habitats on the shallow reef not used in this study: mixed algae, red foliose algae, turfing algae, *Caulerpa* mats and encrusting invertebrates. At Motukaroro, these habitats do not occur at spatial scales which can be mapped with the methods chosen for this study. Turfing algae would make up some of the habitat classified as 'kina barrens' in this study. The two algal types can not be distinguished from each other in aerial photos, which were used as the primary basis for mapping shallow areas. Some of the historic classifications did not deal with inter-tidal or sediment-bottom habitats. **Table 1.** Habitat classifications | Motukaroro<br>(this report) | Mimiwhangata<br>Kerr and Grace | Northeast NZ<br>Shears et al. | Hauraki<br>Gulf Grace | Paparahi<br>Grace 1981 | <b>Leigh</b><br>Ayling 1978 | Mimiwhangata Ballantine et al. | |-----------------------------|--------------------------------------------|-------------------------------|-----------------------|-------------------------------------|-------------------------------|---------------------------------------| | T | 2005 | 2004 | 1983 | | | 1973 | | Inter-tidal<br>Habitats | | | | | | | | Sandy | Sandy beach | Not considered | Not | Sandy beaches | No | Light-coloured | | beaches | | | considered | | equivalent | sand beaches | | Gravel | Gravel beach | Not considered | Not | Gravel beaches | No | Dark-coloured | | beaches | | | considered | | equivalent | sand beaches | | Rocky shores | Rocky shore | Not considered | Not considered | Rocky shores | No equivalent | Solid rock shores | | Mixed rock and sediments | Not present | Not considered | Not<br>considered | Not present | Not present | Not present | | Sub-tidal<br>Habitats | | | | | | | | Sand or mud | Sand/mud | Not considered | Not<br>considered | Sand<br>(sand/mud) | Sand & gravel (in part) | Clean sand | | Gravel or | Gravel/cobble | Not considered | Not | Gravel | Sand & | Coarse gravelly | | cobbles | | | considered | (gravel/cobbles | gravel (in part) | sand, gravel | | Gravel or cobbles | Gravel/cobble | Cobbles | Not<br>considered | Cobbles | Cobbles (in part) | Coarse gravelly sand, gravel, cobbles | | Shallow<br>mixed weed | Shallow mixed weed | Shallow<br>Carpophyllum | Shallow<br>mixed weed | Shallow mixed weed | Shallow<br>broken rock | Shallow exposed zone | | Urchin (kina)<br>barrens | Kina barrens | Urchin barrens | Rock flats | Rock flats | Rock flats | Medium-depth without kelp | | Tangle-weed forest | Tangle-weed (kelp) forest | Carpophyllum flexuosum forest | Kelp forest (in part) | Carpophyllum<br>flexuosum<br>forest | Not present | Shallow<br>sheltered zone | | Ecklonia<br>forest | Ecklonia forest | Ecklonia forest | Kelp forest (in part) | Ecklonia forest | Ecklonia<br>forest | Medium-depth<br>kelp bed | | Deep reef | Deep reef | Not considered | Very deep<br>reef | Not present | Sponge<br>garden (in<br>part) | Very deep reef | | Mixed sand and rock | Deep reef mixed<br>sand and rock<br>(part) | Not considered | No<br>equivalent | No equivalent | No<br>equivalent | No equivalent | The habitat investigation surveyed the northern shore of the Whangarei harbour out to approximately the middle of the channel between Reotahi and Marsden Point and included approximately 2 kms of shoreline. The work was completed in stages between February and May 2006. Aerial photography was used to map habitats in shallow waters (< 12 m depth). In deeper waters sonar methods were used. In both cases video techniques and diving were used to ground-truth the resulting habitat classification. In association with the sonar surveys the soft bottom areas were investigated at randomly chosen sites with a simple rapid sediment sampler. A detailed description of the various methods and equipment used follows. #### Survey vessel All work in this investigation was carried out from a 4.2 m Mac boat powered with a 50 hp outboard. The sonar equipment described below is mounted in the boat and transducers for both machines are mounted on the bottom edge of the transom either side of the motor. #### Side-scan sonar The side-scan unit used was a Humminbird 987-C SI. The unit has side-scan GIS capability as described in the following specification: - Side Image Coverage area (max 200 m swath 0-30 m depth) of the bottom, 160 degrees @-10 dB in 455 kHz. - 2D conventional sonar depth capability 780 m,74 degrees @ -10 dB in 50 kHz & 20 degrees @ -10 dB in 200 kHz. - 7" sunlight viewable colour display with 480V x 854H resolution TFT LCD screen technology (allows easy screen capture w/ digital camera, i.e. no flicker). - Dual frequency 50/200 kHz sonar conventional 2D sonar, side image sonar 262 kHz / 455kHz. - 750 Watts RMS, 6,000 Watts PtP (200 kHz) and 1,000 Watts RMS, 8,000 Watts PtP (50 kHz) Power Output, 63 m target separation. - Dual microprocessors and triple channel sonar transmitter/receiver. - Full screen track-plotter, 3D track and split screen sonar/track with adjustable split. - Programmable view presets access important screens with one touch. - Plug & Play Compatibility and PC Connection. - Accelerated Real Time Sonar<sup>TM</sup> operates at up to 40 times per second to instantly capture the action under the boat. Signal displayed in window as actual sonar return intensity plotted against a vertical depth scale. - Freeze Frame pauses the sonar scroll for detailed inspection of the screen. - Totally automatic operation or totally manual operation with upper and lower range control. - One-touch Zoom with 2 x, 4 x, 6 x, and 8 x zoom levels. - Adjustable chart speed. #### Multibeam 3D sonar A second sonar unit utilised for the project was a Humminbird 947c 3D unit. This machine has a multi-beam arrangement and produces a 3D swath image on its screen. It also has conventional 2D sonar images and the Humminbird 'real time sonar' window display. This second system was used as a check on the interpretation of the side-scan unit and was especially helpful in the interpretation of soft sediments. It was a further advantage to have the track-plotter capability on this second machine so that the side-scan unit was totally free for side-scan imaging. - Same GPS, track-plotter and general features as the Humminbird 987c SI unit described above. - Dual frequency 83/455 kHz arranged in a 6 beam configuration. - Depth capability 3D 75 m, 2D 330 m. - Area of coverage 74 degrees @ -10 dB in 83 kHz & 53 degrees @ -10 dB in 455 kHz. - 750 Watts RMS, 6,000 Watts PtP (200 kHz) and 1,000 Watts RMS, 8,000 Watts PtP (50 kHz) Power Output, 63 mm Target Separation. - Accelerated Real Time Sonar<sup>TM</sup> operates at up to 40 times per second to instantly capture the action under the boat. Signal displayed in window as actual sonar return intensity plotted against a vertical depth scale. - Freeze Frame pauses the sonar scroll for detailed inspection and selection of georeferenced target points via cursor control. #### GPS and Georeferencing data collection For all point and track information in the study a Garmin 12 GPS unit was used. The position accuracy of this unit given by the manufacturer is 15 m. Our own checks of the unit by returning to known points indicated an accuracy of 5-7 m. At the end of each day data was downloaded into a PC laptop into Fugawi 3.4 software for processing to Excel spreadsheets. The track-plotter function in the Humminbird 947c unit was used for basic navigation and the setting up of target points for sonar and video drop positions. #### Rapid Sediment Sampler As a quick field check on interpretation of soft sediment characteristics from the sonar image, a sediment sampling system was devised based on a method used on old sailing ships. In the old days depths were sounded using a lead weight and measured line. A sample of the bottom material was collected during soundings by smearing tallow on the bottom of the lead sounding weight, a small sample of the sediment sticking to the tallow when the weight hit the bottom. We copied the technique by using a lead weight smeared with margarine, dropping the weight to the bottom and retrieving it quickly using a casting rod and reel. This minimised sampling time but enabled retrieval of sufficient sedimentary material to characterise the substrate type. Example photographs of the sampler and sediment samples collected can be seen in (Grace & Kerr 2005). #### Drop video equipment The video drop apparatus was a Sony TRV6e mini DV camera mounted in a simple, robust housing built from a recycled scuba cylinder and Plexiglas sheet material. The housing was arranged with a bottom weight attached to a one metre line attached to the bottom edge of the housing. Another line was attached to the top edge of the housing extending upwards to a series of floats starting at one metre above the housing (Fig. 2). By adjusting the attachment points of the weights and floats we were able to arrive at an arrangement that allowed us to 'feel' when the unit hit the bottom. We would then let out 3-5 m of slack in the line. The unit would then hang vertically from the floats with the camera approximately one metre above the bottom. We found that the arrangement would naturally rotate the housing in a circle or semi-circle, effectively panning the camera and greatly increasing the viewing area. We also devised a method of bouncing the unit along the bottom for short distances which also increased the area photographed. The housing unit had no external camera controls. The camera was simply turned on, set on automatic focus and exposure, placed in the housing and deployed. A remote on/off device was used to place the camera on standby while on the surface between drops. Using this system drops could be made with a minimum of time and effort, allowing many drops during a field work session. At each drop site, time, GPS position and depth were recorded. Depth measurements were tide corrected in post analysis and added to other bathymetry information for the final mapping interpretative work. Following initial analysis of bathymetry and aerial photos, areas of potential reef were marked on a work map. A system of parallel survey lines was then planned, the lines extending beyond the potential reef areas to try to ensure reef edges were detected and to pick up any outlying patch reefs nearby. The lines were approximately 50m apart in the initial survey. The survey lines were as much as possible oriented in north-south and east-west directions to aid interpretation/georeferencing of sonar images. By necessity the survey was adjusted in the field to suit the underwater topography, with most effort being focused in complex areas. At each point along the survey track, where the substrate/habitat classification was judged to have changed, the coordinates of the point were recorded. Depth measurements were not manually recorded with each waypoint record but are available if needed in post analysis as they are constantly recorded on to the side scan images which are saved as still-grabs or on video record. The boat's travel track was recorded for all survey lines. The lines and 'change points' are illustrated in the 'Sonar data points, tracks and video drop points map' (see map section). The data for all survey points is included in Appendix 1. This subjective classification interpretation was informed by diving experience in some of the areas, and by previous experience and testing with the sonar equipment. Where rock structures were visible, representative areas were classified by measuring the sonar 'shadows' cast by the vertical structure. This gives a relatively accurate calibration of vertical features. (Fish and Carr 1990). Classification of the side-scan image and sonar imagery was ground-truthed with drop video, scuba and snorkel dives, and rapid sediment sampling technique during the course of the investigation to ensure the interpretation of the sonar images was accurate. As a further check in the system, side-scan screen still images and video of areas of particular interest were captured in digital formats and archived on DVD backup disks as MPEG2 video and jpg format still photos. The screen image has a window for latitude and longitude coordinates and the video has a lineal time-code so that any point on the survey run can be located and checked or further analysed. The video archive also has a sound track which records the waypoint calls that are made during the survey and any other verbal comment. The classification used for the initial sonar survey was as follows: - 1. high relief rocky reef with vertical structures > 3m - 2. low relief rock reef - 3. mixed reef and soft sediments - 4. gravel/cobble - 5. sand/mud Following the initial survey work, results were brought into an ArcView GIS system and mapped. The initial survey yields an approximate reef edge. Analyses of the initial survey maps indicated further sonar survey lines to be run as required to fill gaps in the interpretation and resolve outstanding issues. In this survey we designed the sonar runs at 50m wide spacings. As a result we had no gaps in the image coverage and in complex areas we did additional runs which increased image overlaps aiding accurate interpretations. Given the small spatial area and extent of side scan coverage we expect that the interpretation of the underwater features in the areas of greater than 10m depths would be similar to the precision of the GPS location equipment, (approximately 5-10m), plus an additional factor of approximately 10m for interpretation error making a possible maximum total error of approximately 20m. In shallow areas where fine resolution was possible from the aerial photos, precision came down to less than 10m and is governed by the georeferencing accuracy of the aerial photos which we estimate is between 5 and 10m. From the mapped sonar survey information a drop video survey was designed. The video survey target points were selected to identify and /or ground truth sonar interpretations of: - 1. all the major physical habitat types - 2. inconsistent interpretations between the side-scan and single beam sonar surveys - 3. areas where it was likely habitat boundaries were still not covered - 4. reef areas and depth zones where major biological boundaries were likely to occur - 5. areas to ground-truth the analysis of aerial photography This survey served the function of checking the sonar interpretation in replicate areas. Secondly, video drops were arranged across depth profiles in each reference area for the purpose of identifying depth dependent zonation patterns of biological communities. At some locations, in order to gather more detailed information than the video drop produces, we used snorkel swims and scuba dives. The data for the video drops are included in Appendix 1. #### Aerial Photography Available aerial photographs were assembled and reviewed. Previous photo series taken for Motukaroro held by the Northland Regional Council (NRC) and the Department of Conservation were not sufficiently useful for mapping sub-tidal structures and habitats. On May 19, 2006 conditions were adequate for aerial photography and a new set of photographs were taken according to the specifications described below. The photos were georeferenced with the use of the NRC 2003 aerial photos and Image Analyst and ArcView GIS software, (Northland Conservancy GIS team). #### Aerial Photography Planning Details Hardware, camera settings, and other technical details were as follows: Camera: Nikon D70 digital SLR Lens: 17-70 mm zoom lens Focus: Fixed on infinity Sensitivity: Digital ISO equivalent 200 Shutter priority: 1/250 second File type(s): Fine resolution jpeg at 6MB file size Download time: 3 seconds per image CF card size: 1 GB Images per card: About 150 Plane: Piper with camera port in floor Height: 3,000 ft (& some were flown at 1,500 ft) Speed: 120 mph Picture length: 170 - 340 m on ground, parallel to flight path Picture width: 250 - 490 m on ground, across flight path Picture centres: 500 m intervals on the ground 20-50m across photo (variable) Flight plan: Flight east from Onerahi, starting just east of Parua Bay follow coast making several passes over the Reotahi and Urquats Bay area. Return flight to Onerahi. #### Bathymetry Data Correction to Chart Data Bathymetry lines for the survey area were captured in the GIS software from the *Land Information NZ Approaches to Marsden Point Chart*. Depth interval contour lines indicating chart datum, 3m, 5m, 10m,15m, 20m, 25m and 30m were used in the mapping exercise to identify location of biological zones in relation to depth. We plotted the drop video points and depths after correcting for tide difference and added them to the chart based bathymetry information. In this study we didn't find it necessary to extract the side scan sonar based depth information to carry out the habitat mapping process. #### Side Scan Still Image Analysis In order to refine the accuracy of reef margin location and to do more detailed checks on the sonar interpretation we took a series of overlapping still image grabs of the sonar screen image during the sonar survey. We timed the taking of the still images so that the images would overlap. Using *Photoshop* software on a PC the images were spliced together on a lineal distance scale or track. Each photo had an accurate point at the top of the image which is the boat's location at the time the screen image was taken. This position location appears on the screen image. Using this technique we were able to generate a lineal track of sonar image. This technique was useful in mapping reef edges and detail of structures and was used in conjunction with the drop video, diving and georeferenced aerial photo resources for the mapping process. #### Habitat Mapping Sonar, video and all ground-truthing information were brought together in a series of GIS layers. Georeferenced (May 2006) aerial photographs were adjusted for light/dark balance and contrast in a graphics programme to provide maximum visibility of underwater structures. The photos were then added as a further layer in a GIS system. A series of work maps were created from all the line and point data, which was overlaid on the aerial photo layer. In the shallow areas (less than 10m depth), aerial photographs allowed resolution of detail to + or - 5m. In areas deeper than 10m the distance between the sonar images combined with the video points determined the accuracy of the sonarderived habitat polygons. In this survey nearly all sonar image tracks were overlapping, so the accuracy of interpretation of detail is similar to the GPS accuracy of +or -10m. Another potential component of error is in the side scan interpretation of the changes of substrate. The challenge here is the interpretation, where often there is a mixed transition between substrates which necessitates a subjective decision. In areas where this is a problem we review the side scan imagery in post processing to further test the initial interpretation. For the purposes of this survey this aspect of the work introduces a further potential error of up to 10m which represents a substrate or habitat transition zone. Thus adding the two error components we estimate that our accuracy in waters deeper than 10m does not exceed 20m. A third error component was also investigated in this survey which was the spatial accuracy of the side scan image itself. In preparing the screen shots of the side scan for this study we were able to check the accuracy of the lineal (direction of boat travel) dimension of the image by georeferencing the sequences of images assembled in *Photoshop* software. Once these images were georeferenced as a GIS layer we were able to see the degree of error in the lineal dimension of each image. This error was very small or negligible and well below the 10m accuracy of the GPS location equipment. Using this same procedure we were also able to check the accuracy of the horizontal dimension (perpendicular to the boat). For this survey we had a number of side scan image sequences that were taken along the shoreline where we could see various detail in the GIS aerial photo layer which we could compare to the same detail on the side scan image. We also had the actual track of boat as a GIS layer which fixed the boat position and centre of the side scan image. We found in these checks that the horizontal dimension accuracy was well within the 10m accuracy of the location equipment, supporting our assessment of the 20m overall precision estimate for the habitat polygons in the waters over 10m depth. Our sonar equipment does not come with an image accuracy rating. Therefore while our work is an indication of accuracy of the images derived, it can not be concluded that it always performs in all conditions and depth ranges with the precision that we have estimated. In the final mapping exercise all the information was assessed collectively to make the best possible approximations of the habitat polygons which were drawn free-hand on hard copy work maps (1:4,000 scale). The hand-drawn habitat polygons on the work map were then digitised through a combination of scanning and computer drawing methods and transferred to the GIS system to produce the final habitat map. Depth boundaries of the various habitats defined were determined by a combination of drop video, scuba diving, snorkelling and knowledge of similar habitats. Beyond the depth at which detail was visible on aerial photographs (10m), biological habitat lines were located by interpolation along depth contours derived from the digitised bathymetry. In shallow water where good detail was available from aerial photographs, habitat boundaries were drawn directly on aerial photo prints as described above. An A3 size map of the habitat study area is included as Map 2 in the back of the report. Figure 2. Drop video apparatus Figure 3. Sonar equipment and research boat #### **Results** #### Habitat map The habitat maps included at the end of this report (Map 2 Motukaroro Habitat Map) represent the summation of all the information assembled in this investigation. The total area mapped is approximately 75ha. The mapped area includes shorelines and seabed features landwards of a 2km stretch of the shoreline at Reotahi. The habitat classification used is shown in Table 1. Table 2 below details the area of each habitat occupied within the mapped area, as well as the percentage of the mapped area covered by each habitat. Table 3 details the areas of each habitat within the Motukaroro marine reserve area as well as the percentage each habitat is of the total reserve area. **Table 2.** Motukaroro entire survey area habitat areas. | Hectares | Percentage of Habitats | Inter-tidal Habitats | |----------|------------------------|-------------------------------| | 0.235 | 0.32% | sand | | 1.812 | 2.44% | mixed sand and rock | | 0.374 | 0.50% | rock | | | | | | | | Sub-tidal Habitats | | 64.504 | 86.87% | sand/mud | | 0.364 | 0.49% | cobble | | 2.847 | 3.83% | shallow mixed weed | | 0.182 | 0.25% | tangle weed forest | | 0.034 | 0.05% | urchin barrens | | 0.81 | 1.09% | Ecklonia forest | | 2.48 | 3.34% | mixed rock sand | | 0.029 | 0.04% | coralline turf | | 0.41 | 0.55% | deep reef | | 0.171 | 0.23% | mixed sand and rock deep reef | | 74.252 | 100.00% | Total | **Table 3.** Motukaroro marine reserve area habitat areas | Hectares | Percentage of Habitats | Inter-tidal Habitats | |----------|------------------------|-------------------------------| | 0.175 | 0.69% | sand | | 0.972 | 3.80% | mixed sand and rock | | 0.296 | 1.16% | rock | | | | | | | | Sub-tidal Habitats | | 19.140 | 74.92% | sand/mud | | 0.364 | 1.42% | cobble | | 2.094 | 8.20% | shallow mixed weed | | 0.182 | 0.71% | tangle weed forest | | 0.034 | 0.13% | urchin barrens | | 0.750 | 2.94% | Ecklonia forest | | 1.229 | 4.81% | mixed rock sand | | 0.029 | 0.11% | coralline turf | | 0.150 | 0.59% | deep reef | | 0.131 | 0.51% | mixed sand and rock deep reef | | | | | | 25.546 | 100.00% | Total | By far the greatest part (87 %) of the total survey and mapped area is occupied by sand/mud and gravels. Rock and sediment mixes comprise 6 % of the mapped area, with 6.3 % being solid rock habitats. For the area within the marine reserve boundary the soft sediments comprise 77 % of the area. In the marine reserve the mixed rock and sand habitats comprise 9.13% of the area and the various habitats on rock substrates make up 13.72 % of the area. The rock and rock-sediment mixes thus make up only a small proportion of the Motukaroro seabed, but have a disproportionately large ecological importance because of their high topographical complexity and consequently high biological diversity. Inter-tidal habitats occupy only 3.3 % of the total mapped area, but are interestingly the only habitats seen by the vast majority of people. A composite image of the aerial photography used for the habitat mapping exercise is included at the end of this report as Map 3. #### **Habitat descriptions** Intertidal habitats. Sandy beaches There are very limited areas of sandy beaches in the Motukaroro area. Biologically the sandy beaches support little life with low species abundance and diversity compared to the other habitats. Apart from sand hoppers on the drift line, marine life consists of several species of worms and tiny crustaceans on the middle or lower parts of the beaches. Gravel and cobble beaches Many of the beaches in the area consist of gravel and pebbles, or gravel with sandy areas at certain tidal levels. There are small gravel beaches in coves on the rocky shores on the mainland. This habitat is hostile to macro-invertebrates since even in very light wave action the movement of gravel and pebbles causes mechanical damage to organisms living there. #### Rocky shores A high proportion of the mainland and Motukaroro shoreline consists of hard rock of volcanic origin. Marine life on these rocky shores is rich and varied. The details of distribution and types of animals and plants present are controlled mainly by tidal level and the degree of exposure to wave action (Morton and Miller 1973). Some of the more familiar forms of marine life are rock oysters *Crassotrea gigas* on the most sheltered shores, and barnacles. The southern side of Motukaroro Island has a very interesting uniformly sloping inter-tidal rock reef which shows classic inter-tidal zonation. #### Mixed rock and sand In the Motukaroro area this is a common habitat and is therefore included in our habitat classification. This habitat is a result of the mass wasting and erosion that has taken place in the surrounding hills of volcanic origin. In this habitat many specialised niche opportunities are created in and around the stones and boulders for a wide range of marine invertebrates. During high tides these invertebrates are a potential feeding opportunity for predatory fish. During low tide periods wader bird species, most notably oyster catchers, can be seen foraging in the rocks and boulders. Sub-tidal habitats. Sand and soft sediments (depth range 0-30m) The soft sediments of the Motukaroro area are very varied across spatial scales. They range from fine sands to coarse sand shell mixes. Frequently the sandy environments are strewn with small rocks and boulders which do much to add to the diversity of these habitats. In the course of our survey work we saw scattered individuals of a number of invertebrate species which are characteristic of this habitat. These organisms were: the morning star shell *Tawera spissa*, a bivalve shellfish 20 to 25mm in length, horse mussel *Atrina zelandica*, scallop *Pecten novaezealandiae*, sand dollar, *Fellaster zealandiae*, eleven armed starfish, *Coscinasterias calamaria*, and the common octopus *Pinnoctopus cordiformis*. #### *Gravel or cobbles (depth range 0-30m)* Under normal conditions a cobble bottom is fairly stable. In the Motukaroro area these cobble areas are often strewn with larger stones or boulders thus making the habitat more diversified. The semi-stable nature of this habitat enables some types of faster-growing seaweeds (often red algae) to survive on the more stable rocks. This however is a precarious existence as even in the semi-sheltered situation of the Motukaroro area there may be very strong currents due to large tides at times, as well as significant wave action caused by surface winds on the harbour which particularly affect shallow areas. A wide range of invertebrates and fish life frequents these areas. #### *Shallow mixed weed (depth range 0-5)* This habitat occurs on rocky reefs between low water and about 5 m depth. Typically the rocky substrate is often very broken and dissected, with tumbled boulders, ridges and crevices. Several species of large brown algae are visually dominant. The flapjack kelp *Carpophyllum maschalocarpum* appears occasionally as a thin layer at the top of the zone. Small plants of common kelp *Ecklonia radiata* occur throughout this zone and at times dominate especially in the high current areas. In a very patchy distribution tangle weed kelp *Carpophyllum flexuosum* is quite dominant in the zone, while in other areas the tangle weed plants are in a mixed distribution with *Ecklonia radiata*. The sea-urchin or kina *Evechinus chloroticus* is common in this habitat, usually nestled in holes, crevices and depressions. Here it often feeds on seaweed which has been torn off the rocks by heavy wave action. A wide variety of grazing molluscs also occur in this habitat. #### *Urchin (kina) barrens (depth range 3-10 m)* At Motukaroro areas big enough to map as kina barrens are rare. This is probably because the habitat is not ideal for kina with the high suspended silt loads that regularly occur. This rocky habitat is characterised by a lack of large brown algae, the rock surface appearing bare and relatively barren. Upon close inspection nearly the whole rock surface is covered in a thin film of mauve to pink-coloured encrusting coralline seaweed (coralline 'paint'), in some areas with coralline turfing algae as well. In a few areas small plants of the brown seaweeds such as *Carpophyllum flexuosum* form patches within the predominantly coralline paint-covered rocks. The most conspicuous animal in this habitat is the sea urchin or kina which is often present at a density of 5-10 m² but may be much denser in places. It is the grazing by urchins that maintains the habitat in its relatively barren state. Sea urchins scrape the rock surface, removing recently settled algae and encrusting animals before they have a chance to grow. Sea urchins may also graze directly on large attached algae. This is relatively uncommon but when it does occur can lead to an extension of the kina grazed zone into formerly algal-covered areas. This zone is also the home of a number of small grazing molluscs, such as limpets and chitons. The most spectacular grazing mollusc here is the large Cook's turban shell (*Cookia sulcata*), a rough surfaced gastropod 10cm or more in diameter. #### *Tangle-weed forest (depth range 1-10 m)* In the most sheltered areas of rock substrate, a thick, almost impenetrable tangled forest of the brown seaweed *Carpophyllum flexuosum* occurs. Individual plants may reach a height of over 3m. With increasing wave exposure and/or current, it intergrades with *Ecklonia* forest. This habitat usually gives way to *Carpophyllum maschalocarpum* and a narrow strip of the shallow mixed weed zone towards low tide. The seaweed and the rock substrate of this sheltered zone are nearly always covered with a thin layer of fine silt, settled out from the water, which may be relatively turbid. This detritus provides food for a range of specialized detritus and deposit feeders, such as the sea cucumber (*Stichopus mollis*) found on the rocks and in crevices beneath the weed canopy. #### Ecklonia forest (depth range 1-10m) Ecklonia forest is characterised by dominance of the large brown laminarian kelp Ecklonia radiata. This seaweed attaches to the rock surface by a branched holdfast, and has a single cylindrical stalk or stipe, on top of which is a bushy top or lamina. The density of the plants varies considerably, with perhaps 5 plants per metre in 'thin' beds, often in deeper water, and about 50 plants per metre in dense, usually shallower, beds. The length of the stipe also varies, apparently with depth, from about 20 cm in adult plants in shallow slightly turbulent water, to about 80-100 cm in some deeper sites. The canopy of the *Ecklonia* forest greatly reduces the light intensity on the rock surface beneath, which provides more favourable conditions for small encrusting animals such as bryozoans, hydroids, sponges and ascidians. The holdfasts of *Ecklonia* provide a crevice-like habitat for a rich diversity of life. In many areas the rocky bottom occupied by *Ecklonia* forest is of low relief, but where a high relief rocky substrate occurs within this zone, *Ecklonia* plants are usually found on the tops of the rocks, but not on their more shaded vertical sides, which typically are covered in a rich variety of encrusting animal life. As light levels diminish with increasing depth, sponges of numerous types become increasingly common within the thinning *Ecklonia* forest. The *Ecklonia* forest zone usually occupies the rocky reefs between the urchin barren zone and the sandy seafloor, generally in a depth range of 4-29m. At Motukaroro *Ecklonia* is commonly part of the shallow mixed weed zones. Typically in areas of high current the shallow mixed weed zone makes way to a solid stand of *Ecklonia radiata* which in turn typically starts to thin out beyond about 8m depth and disappears beyond 10-12 meters. In the Motukaroro area it is common for the sponge community to be well developed under the *Ecklonia* canopy right up to the shallow mixed weed zone, thus the boundaries of these biotypes are very much overlapping. #### Deep reef (depth greater than 10m) On the rocky bottom deeper than 10m there is insufficient light to support the large brown seaweeds found in shallower water. Sponge species become the dominant life form on the deep reef. Representative sponges recorded at Motukaroro are: the massive grey sponge *Ancorina alata*, the orange branching sponge, *Raspailia* sp., a yellow branching sponge, *Iophon sp.* a massive yellow sponge, *Polymastia granulosa*, and the orange golf ball sponge, *Tethya aurantium*. The deeper areas off the Motukaroro Island reef have especially diverse and vigorous sponge communities. As previously mentioned an unusual feature of the sponge dominated encrusting communities at Motukaroro is the tendency for the community to extend well up into shallow water growing vigorously as a sub canopy community with the larger brown kelp species. The degree to which this is common at Motukaroro is unusual and points to the very special nature of the place. Drawing distinct habitat or biotype lines at a certain depth contour is problematic because there is so much overlap in communities. However drawing the lines at an approximate depth contour is helpful to illustrate that there is a transition zone. Figure 4. Representative photos from the deep reef sponge community at Motukaroro **Figure 5.** Representative sonar images. This image is a composite of a series of screen shots on a survey line from sonar points 31-34 (refer Map Section Map 1). This track runs from south to north just past the west end of Motukaroro Island. The distance from data point 31 to point 34 is 181 m. Mixed sand and rock (depth range 0-10m algal communities on patch reefs, and 10-30m sponge encrusting invertebrate communities on patch reefs and boulders) This habitat type occurs in transition zones between reef and sediment as well as in areas comprised of a patchy mixture of rock and sediment habitats. There are extensive areas of this habitat at Motukaroro. This ecologically important habitat is the preferred habitat of some species and is part of the habitat of the juvenile life stage of some reef species (for example, goatfish, juvenile snapper and blue cod). It is usually the place where species that shelter on reefs but feed in the sediments (like rock lobsters) forage most intensely. The habitat covers those areas where there is a mixture of small patches of rock scattered amongst sandy areas, but each is of such small extent that it is not possible to map them on the scale used for this survey. #### Coralline Turf This habitat is characterised by a low dense encrusting cover of calcified algae of the *Corallina* genus. Occasional patches of this habitat occur in the shallow reefs areas of Motukaroro. Most of these patches are too small in area to map, however there was one significant area of this habitat mapped in this survey. It is a long thin band of coralline turf in shallow water near the middle of the reserve area. Coralline turf forms a dense mat cover which is an important biogenic habitat. A wide diversity of invertebrates can be found in these habitats. #### **Discussion** The habitat map of Motukaroro produced in this study is intended as a tool for managers, iwi and community groups interested in examining the marine environment of Motukaroro. Habitat maps are especially useful in assisting the design of baseline change over time monitoring or research studies. While we can put forward questions about the effect of establishing a reserve at Motukaroro now, it is likely that there will be changes that occur that no one has predicted. This has been the pattern of past reserves and is an indication of how complex marine systems are and how little we know about these systems in an 'unfished state'. For this reason baseline work, like habitat mapping and aerial photography coupled with population monitoring of key exploited species, allows for a great deal of flexibility for future enquiries. #### Habitat map #### Limitations of the study There were some limitations to our methods which should be noted. The precision changed with depth, reflecting the methods used, being greatest in shallow areas and decreasing as the depth increased. We suggest this is appropriate in that significant biological boundaries occur across much smaller scales in shallow waters and tend to become further apart as depth increases. In depths less than 10m the accuracy of the mapping was determined by the interpretation of aerial photography which in most areas afforded resolution of detail down to 3-5m. Overall accuracy was limited by georeferencing error (i.e. approx 10 m). In this survey, in waters deeper than 10m, we were able to achieve nearly 100% survey coverage and in most cases had overlapping sonar images to work with. As a result, in terms of the physical habitats, we expect that the accuracy of our habitat lines is within 20m, which accounts for GPS error and interpretation of the sonar and a small error (estimated to be 10m) which we have not fully quantified generated by the sonar equipment in the lateral dimensions of the sonar image. There are other limitations of the habitat map that are a combination of the special characteristics of the Motukaroro site. Divisions between biological zones which are normally depth dependent and quite distinct in Northland are typically variable or overlapping at Motukaroro. In the shallow mixed zone there is a high degree of patchiness in the combination of the algal species. The pattern of variation is often very localised and difficult to map at the scales we were working at. We also found that the deep sponge community overlapped with the algal forests more at Motukaroro than is typically observed at other sites. This boundary varied to a degree between parts of the study area. These variations can probably be explained by the effects of currents and eddies which are strong in places and quite variable across very small distances due to the complex topography of the coast in the study area. These localised currents influence silting and light penetration significantly. These factors in turn have a defining influence on biological zonation especially of algal species. #### **Recommendations** - 1. The information and maps in this report should be promoted widely as awareness tools within the community. - 2. Further refinement of some of the habitat map and descriptions in the Motukaroro area would be desirable from a science perspective due to the uniqueness of the area. This work could include acquisition of additional images of the various habitats to help with presentations and other work within the community. - 3. Opportunities exist to fill in the key information gaps identified, particularly soft sediment faunas, sponge and encrusting invertebrate community taxonomy. ## Acknowledgements We thank the Department of Conservation for the funding support that made this work possible. We would like to thank the following people for their direct contributions to this project: Terry Conaghan and Lorraine Wells, Information Management Unit, Northland Conservancy, DoC, for GIS work and mapping; Paul Buisson, TSO Northland Conservancy, for his input into design of this work and supervision of the contract. We'd also like thank the Whangarei Area Staff of DoC for their support of this project. Kevin Leleu and Brice Remy-Zephir, graduate students at the Leigh Lab, Auckland University assisted with field work and the georeferencing of sonar images. Map 1 Sonar data points, tracks and video drop points Map 2 Motukaroro habitat map Map 3 2006 Motukaroro aerial photo composite image #### References Ayling, A.M.; Cumming, A.; Ballantine, W.J. 1981. Map of shore and subtidal habitats of the Cape Rodney to Okakari Point Marine Reserve, North Island, New Zealand in 3 sheets, scale 1:2,000. Department of Lands and Survey, Wellington. Babcock, R.C.; Kelly, S.; Shears, N.T.; Walker, J.W.; Willis, T.J. 1999: Large-scale habitat change in a temperate marine reserve. *Marine Ecology Progress Series 189*: 125.134. Bioresearches, 1976. Aspects of the ecology of the area surrounding the oil refinery at Marsden Point. Report for New Zealand Refining Company Limited. 190 p. Brook, F.J. 2002. Biogeography of near-shore reef fishes in northern New Zealand. Journal of the Royal Society of New Zealand 32(2): 243-274. Brook, F., 2001. Survey of Motukaroro Island, Whangarei Harbour. Unpublished data, Department of Conservation, Northland Conservancy. Fish, J.P.; Carr, H.A. 1990: Sound underwater images: a guide to the generation and interpretation of side scan sonar data. Lower Cape Publishing, Orleans, MA., USA. (2nd edition). Grace, R.V., 1983. Zonation of sublittoral rocky bottom marine life and its changes from outer to inner Hauraki gulf, north eastern New Zealand. *Tane* 29: 97-107 (Journal of the Auckland University Field Club). Grace, R.V., Kerr, V.C., 2005. Intertidal and subtidal habitats of Doubtless Bay, Northland, N.Z. Contract report for the Department of Conservation, Northland Conservancy, Whangarei. Kerr, V., Grace, R.V., 2005. Intertidal and subtidal habitats of Mimiwhangata Marine Park and adjacent shelf. Department of Conservation Research and Development Series 201, 55 p. (http://www.doc.govt.nz/Publications/004~Science-and-Research/DOC-Research-and-Development-Series/PDF/drds201.pdf). Kamo High School, 2002. Whangarei Harbour Marine Reserve Application, *Te Wahapu O Whangarei Terenga Paraoa*. Compiled by Vince Kerr and the Kamo High School Year 13 Geography Class. Published by Kamo High School, P.O Box 4137, Kamo, Whangarei, New Zealand. Kingsford, M., Battershill C. (eds) 1998. Studying temperate marine environments, a handbook for ecologists. Canterbury Univ Press. Mason, R.S. & Ritchie, L.D., 1979. Aspects of the ecology of Whangarei Harbour. Fisheries Management Division, Ministry of Agriculture and Fisheries. Morrison, M., 2003. A review of the natural marine features and ecology of Whangarei Harbour. NIWA Client Report AKL2003-112. 59 p. Morrison, M., 2005. An information review of the natural marine features and ecology of Northland. NIWA client report for Department of Conservation, May 2005. 162p. Morton, J.E.; Miller, M.C. 1973. The New Zealand seashore. Collins, London – Auckland (2<sup>nd</sup> edition). Northland Harbour Board, 1984a. Soft Shore Investigations; Technical Report No. 4. Northland Harbour Board publication. Northland Harbour Board, 1984b. Rocky Shore Investigations Part 1; Technical Report No. 7. Northland Harbour Board publication. Northland Harbour Board, 1986. Whangarei Harbour Study (draft). Northland Harbour Board publication. Shears, N.T.; Babcock, R.C. 2002: Marine reserves demonstrate top-down control of community structure on temperate reefs. *Oecologia 132*: 131.142. Shears, N.T.; Babcock, R.C.; Duffy, C.A.J.; Walker, J.W. 2004. Validation of qualitative habitat descriptions commonly used to classify subtidal reef assemblages in north-eastern New Zealand. *New Zealand Journal of Marine and Freshwater Research*, 38: 743-742. Willis, T. J., Millar, R. B. & Babcock, R. C., 2000. Detection of spatial variability in relative density of fishes: comparison of visual census, angling, and baited underwater video. *Marine Ecology Progress Series* 198. 249-260. ## **Appendix 1. Sonar Data Points** ## **Appendix 2 Video Drop Data Points** # Appendix 1 Sonar data points | Wpt | Lat | Long | Eastings | Northings | Data Type | Habitat | Notes | |-----|---------------------------|----------------------------|----------------------|--------------------|----------------|---------|---------------| | 1 | -35.8300156 | 174.4933337 | 2645571 | 6595645 | sonar | S | | | 2 | -35.826636 | 174.4933552 | 2645580 | 6596020 | sonar | S | | | 3 | -35.8266575 | 174.4933337 | 2645578 | 6596018 | sonar | S | | | 4 | -35.8248765 | 174.4933552 | 2645583 | 6596215 | sonar | r | | | 5 | -35.8237822 | 174.4933605 | 2645586 | 6596337 | sonar | r | | | 6 | -35.8233101 | 174.4933659 | 2645587 | 6596389 | sonar | S | | | 7 | -35.8232779 | 174.4936341 | 2645611 | 6596392 | sonar | | photo | | 8 | -35.8248872 | 174.4942725 | 2645666 | 6596213 | sonar | | photo | | 9 | -35.8254612 | 174.4941062 | 2645650 | 6596149 | sonar | S | | | 10 | -35.8280844 | 174.4942349 | 2645656 | 6595858 | sonar | S | | | 11 | -35.8289374 | 174.4942242 | 2645654 | 6595763 | sonar | r | | | 12 | -35.8299352 | 174.4942671 | 2645655 | 6595653 | sonar | S | | | 13 | -35.8309866 | 174.4942296 | 2645650 | 6595536 | sonar | | photo | | 14 | -35.8308793 | 174.4950074 | 2645721 | 6595547 | sonar | | photo | | 15 | -35.831625 | 174.4950932 | 2645727 | 6595464 | sonar | | photo | | 16 | -35.8300371 | 174.495104 | 2645731 | 6595640 | sonar | r | | | 17 | -35.8295811 | 174.4950932 | 2645731 | 6595691 | sonar | r | high relief | | 18 | -35.8289266 | 174.4950664 | 2645730 | 6595763 | sonar | sr | | | 19 | -35.828063 | 174.4949967 | 2645725 | 6595859 | sonar | | photo | | 20 | -35.8255524 | 174.4947177 | 2645705 | 6596138 | sonar | edge | roch on right | | 21 | -35.8263571 | 174.4958013 | 2645801 | 6596047 | sonar | S | | | 22 | -35.8279396 | 174.4958335 | 2645801 | 6595872 | sonar | r | | | 23 | -35.8286531 | 174.495855 | 2645801 | 6595792 | sonar | sr | edge | | 24 | -35.8292807 | 174.4958603 | 2645801 | 6595723 | sonar | sr | edge big rock | | 25 | -35.8300371 | 174.4958603 | 2645799 | 6595639 | sonar | sr | edge big rock | | 26 | -35.8307291 | 174.4959086 | 2645802 | 6595562 | sonar | sr | edge big rock | | 27 | -35.8317537 | 174.4958711 | 2645797 | 6595448 | sonar | sr | edge big rock | | 28 | -35.8319146 | 174.4962037 | 2645827 | 6595430 | sonar | sr | edge big rock | | 29 | -35.8318878 | 174.4965792 | 2645861 | 6595432 | sonar | sr | edge big rock | | 30 | -35.8307988 | 174.4965416 | 2645859 | 6595553 | sonar | sr | edge big rock | | 31 | -35.8304019 | 174.496488 | 2645855 | 6595597 | sonar | edge sr | | | 32 | -35.8297581 | 174.4965255 | 2645860 | 6595669 | sonar | edge sr | | | 33 | -35.8293504 | 174.4965094 | 2645859 | 6595714 | sonar | edge sr | | | 34 | -35.8287818 | 174.4964826 | 2645858 | 6595777 | sonar | edge sr | photo | | 35 | -35.8282722 | 174.4964236 | 2645854 | 6595834 | sonar | | photo | | 36 | -35.8285297 | 174.4964987 | 2645860 | 6595805 | sonar | r | onmicht aide | | 37 | -35.8278269 | 174.4963163 | 2645845 | 6595883 | sonar | r | onright side | | 38 | -35.8287121 | 174.4967187 | 2645879 | 6595784 | sonar | r | photo | | | -35.8286048 | 174.4978666<br>174.4983065 | 2645983 | 6595794 | sonar | | photo | | 40 | -35.8286209<br>-35.828932 | 174.4983065 | 2646023<br>2646016 | 6595792<br>6595758 | sonar | C | photo | | 41 | -35.828932 | 174.4982368 | 2645921 | 6595765 | sonar | S | | | 42 | -35.8288676 | 174.49718 | 2645853 | 6595768 | sonar | edge | photo | | 43 | -35.8288945 | 174.4964343 | 2645807 | 6595765 | sonar | | photo | | 45 | -35.8289481 | 174.4959194 | 2645756 | 6595760 | sonar | çr. | Photo | | 46 | -35.8299018 | 174.4935361 | 2645736 | 6595756 | sonar | sr | | | 47 | -35.8290018 | 174.4940833 | 2645634 | 6595749 | sonar | sr | | | 48 | -35.8290001 | 174.494013 | 2645666 | 6595672 | sonar<br>sonar | sr | photo | | 49 | -35.8315928 | 174.4943831 | 2645801 | 6595466 | | | photo | | 50 | -35.8316518 | 174.493914 | 2645795 | 6595460 | sonar | c | photo | | 50 | -22.0210210 | 1/4.47.30470 | 40 <del>1</del> 3733 | 0373400 | sonar | S | | | 51 | -35.8301175 | 174.4959515 | 2645807 | 6595630 | sonar | r | | |-----|-------------|-------------|---------|---------|----------------|-----|--------| | 52 | -35.8295382 | 174.4959301 | 2645807 | 6595694 | sonar | r | | | 53 | -35.8290876 | 174.4958872 | 2645804 | 6595744 | sonar | | photo | | 54 | -35.8284439 | 174.4958496 | 2645801 | 6595816 | sonar | cob | r | | 55 | -35.8278001 | 174.4957692 | 2645795 | 6595887 | sonar | 200 | photo | | 56 | -35.8273495 | 174.4957799 | 2645797 | 6595937 | sonar | | photo | | 57 | -35.8272476 | 174.4959462 | 2645812 | 6595948 | sonar | | photo | | 58 | -35.8278162 | 174.4958764 | 2645805 | 6595885 | sonar | | photo | | 59 | -35.8287121 | 174.4967133 | 2645879 | 6595784 | sonar | | photo | | 60 | -35.829565 | 174.496606 | 2645868 | 6595690 | sonar | | photo | | 61 | -35.8299781 | 174.4965524 | 2645862 | 6595644 | sonar | | photo | | 62 | -35.8305092 | 174.4964933 | 2645855 | 6595585 | sonar | | photo | | 63 | -35.8309329 | 174.4967455 | 2645877 | 6595538 | sonar | | photo | | 64 | -35.8314479 | 174.4967401 | 2645876 | 6595481 | sonar | | photo | | 65 | -35.8323438 | 174.4967187 | 2645872 | 6595381 | sonar | | photo | | 66 | -35.8328266 | 174.4967079 | 2645870 | 6595328 | sonar | | photo | | 67 | -35.8329017 | 174.4907079 | 2645942 | 6595318 | | | photo | | 68 | -35.8329017 | 174.4973072 | 2645937 | 6595499 | sonar<br>sonar | | photo | | 69 | -35.8307076 | 174.4974107 | 2645935 | 6595562 | | 6 | Piloto | | 70 | -35.8307070 | 174.4973731 | 2645934 | 6595570 | sonar | S | photo | | 71 | -35.8303429 | 174.4973024 | 2646005 | 6595601 | sonar | | photo | | 72 | | | | 6595511 | sonar | | photo | | 73 | -35.8311529 | 174.4983602 | 2646023 | | sonar | r | | | 74 | -35.8319468 | 174.4983655 | 2646022 | 6595423 | sonar | S | | | | -35.8333201 | 174.4983816 | 2646021 | 6595270 | sonar | S | | | 75 | -35.8332718 | 174.4992882 | 2646103 | 6595274 | sonar | S | | | 76 | -35.8325262 | 174.4992024 | 2646096 | 6595357 | sonar | r | | | 77 | -35.8320434 | 174.4991487 | 2646092 | 6595411 | sonar | r | | | 78 | -35.8316357 | 174.4991273 | 2646091 | 6595456 | sonar | r | | | 79 | -35.8307988 | 174.4990361 | 2646085 | 6595549 | sonar | sr | | | 80 | -35.8302356 | 174.4990361 | 2646086 | 6595612 | sonar | sr | | | 81 | -35.8297367 | 174.4989824 | 2646082 | 6595667 | sonar | sr | mhata | | 82 | -35.8290447 | 174.4989985 | 2646085 | 6595744 | sonar | | photo | | 83 | -35.8292002 | 174.4994599 | 2646126 | 6595726 | sonar | | photo | | 84 | -35.8294685 | | 2646144 | 6595696 | sonar | | photo | | 85 | -35.830477 | 174.4997281 | 2646148 | 6595584 | sonar | sr | | | 86 | -35.8309866 | 174.4997656 | 2646150 | 6595527 | sonar | S | | | 87 | -35.8317161 | 174.4997871 | 2646151 | 6595446 | sonar | S | | | 88 | -35.8321024 | 174.4997817 | 2646149 | 6595403 | sonar | sr | | | 89 | -35.8327354 | 174.4998568 | 2646155 | 6595333 | sonar | sr | | | 90 | -35.8335454 | 174.4998998 | 2646157 | 6595243 | sonar | S | | | 91 | -35.8335079 | 174.5007742 | 2646236 | 6595246 | sonar | S | | | 92 | -35.8307827 | 174.500624 | 2646228 | 6595548 | sonar | r | | | 93 | -35.8301873 | 174.500624 | 2646229 | 6595614 | sonar | r | | | 94 | -35.8298654 | 174.5006293 | 2646230 | 6595650 | sonar | r | -14 | | 95 | -35.829801 | 174.5006347 | 2646231 | 6595657 | sonar | | photo | | 96 | -35.8301819 | 174.5014018 | 2646300 | 6595614 | sonar | | photo | | 97 | -35.8310349 | 174.5013589 | 2646294 | 6595519 | sonar | sr | | | 98 | -35.8317537 | 174.5014232 | 2646298 | 6595439 | sonar | r | | | 99 | -35.83273 | 174.5014984 | 2646303 | 6595331 | sonar | S | | | 100 | -35.8333523 | 174.5015091 | 2646303 | 6595262 | sonar | S | | | 101 | -35.8333469 | 174.502539 | 2646396 | 6595261 | sonar | S | 1 | | 102 | -35.8312924 | 174.5023191 | 2646380 | 6595489 | sonar | S | edge | | 103 | -35.8312763 | 174.5033598 | 2646474 | 6595489 | sonar | r | | | 104 | -35.8320863 | 174.503215 | 2646460 | 6595400 | sonar | sr | | | 105 | -35.8332289 | 174.5032257 | 2646458 | 6595273 | sonar | S | | | 106 | -35.8332396 | 174.5042557 | 2646551 | 6595270 | sonar | s | l I | |-----|-------------|-------------|---------|---------|-------|-----|-------| | 107 | -35.8320541 | 174.5042337 | 2646532 | 6595402 | sonar | r | ? | | 108 | -35.8315498 | 174.5039874 | 2646531 | 6595458 | sonar | cob | | | 109 | -35.8310241 | 174.5039606 | 2646529 | 6595516 | sonar | cob | | | 110 | -35.8307237 | 174.5039445 | 2646528 | 6595550 | sonar | cob | | | 111 | -35.8304931 | 174.5039115 | 2646525 | 6595575 | sonar | cob | | | 112 | -35.8304662 | 174.5043522 | 2646566 | 6595578 | sonar | cob | | | 113 | -35.8313514 | 174.5046419 | 2646590 | 6595479 | sonar | sr | | | 114 | -35.8321399 | 174.5048511 | 2646607 | 6595391 | sonar | sr | | | 115 | -35.8327515 | 174.504894 | 2646610 | 6595323 | sonar | sr | | | 116 | -35.8332826 | 174.5049101 | 2646610 | 6595264 | sonar | S | | | 117 | -35.833245 | 174.505865 | 2646697 | 6595267 | sonar | S | | | 118 | -35.8314265 | 174.5053339 | 2646652 | 6595469 | sonar | S | | | 119 | -35.8304019 | 174.5049745 | 2646622 | 6595584 | sonar | r | | | 120 | -35.8302087 | 174.5055485 | 2646674 | 6595604 | | 1 | photo | | 121 | -35.8302087 | 174.5056397 | 2646681 | 6595504 | sonar | e. | photo | | 121 | -35.83111 | 174.5058328 | 2646697 | 6595424 | sonar | S | | | | | | | | sonar | S | | | 123 | -35.8324082 | 174.5060688 | 2646717 | 6595359 | sonar | S | | | 124 | -35.8326925 | 174.506101 | 2646719 | 6595328 | sonar | S | | | 125 | -35.8326925 | 174.5066214 | 2646766 | 6595327 | sonar | S | | | 126 | -35.8314265 | 174.5060688 | 2646719 | 6595468 | sonar | S | | | 127 | -35.8303321 | 174.5059294 | 2646708 | 6595590 | sonar | S | | | 128 | -35.8300049 | 174.5058811 | 2646705 | 6595626 | sonar | r | | | 129 | -35.829329 | 174.506557 | 2646767 | 6595700 | sonar | | photo | | 130 | -35.8302517 | 174.5066965 | 2646778 | 6595598 | sonar | sr | | | 131 | -35.8309866 | 174.506734 | 2646780 | 6595516 | sonar | S | | | 132 | -35.8321453 | 174.5067716 | 2646781 | 6595387 | sonar | S | | | 133 | -35.832494 | 174.5067716 | 2646780 | 6595349 | sonar | S | | | 134 | -35.8325476 | 174.5075655 | 2646852 | 6595341 | sonar | S | | | 135 | -35.8313514 | 174.5074475 | 2646844 | 6595474 | sonar | S | | | 136 | -35.8300478 | 174.5072651 | 2646830 | 6595619 | sonar | S | | | 137 | -35.8293397 | 174.5071632 | 2646822 | 6595698 | sonar | S | | | 138 | -35.8290232 | 174.507131 | 2646820 | 6595733 | sonar | S | | | 139 | -35.8285672 | 174.5078874 | 2646889 | 6595783 | sonar | S | | | 140 | -35.8295865 | 174.5079571 | 2646893 | 6595669 | sonar | S | | | 141 | -35.8302731 | 174.5079893 | 2646895 | 6595593 | sonar | S | | | 142 | -35.8315016 | 174.5080483 | 2646898 | 6595457 | sonar | S | | | 143 | -35.832435 | 174.5081288 | 2646903 | 6595353 | sonar | S | | | 144 | -35.8326442 | 174.5081341 | 2646903 | 6595330 | sonar | S | | | 145 | -35.832553 | 174.5088959 | 2646972 | 6595339 | sonar | S | | | 146 | -35.8316357 | 174.5088744 | 2646972 | 6595440 | sonar | S | | | 147 | -35.8307881 | 174.5087832 | 2646965 | 6595535 | sonar | S | 1 | | 148 | -35.829506 | 174.5085579 | 2646948 | 6595677 | sonar | | photo | | 149 | -35.8286048 | 174.5084292 | 2646938 | 6595777 | sonar | | photo | | 150 | -35.8303107 | 174.5198447 | 2647966 | 6595570 | sonar | | photo | | 151 | -35.830257 | 174.5196247 | 2647946 | 6595576 | sonar | | photo | | 152 | -35.8292914 | 174.514786 | 2647511 | 6595691 | sonar | | photo | | 153 | -35.8294255 | 174.514153 | 2647453 | 6595677 | sonar | | photo | | 154 | -35.8296401 | 174.5137292 | 2647414 | 6595654 | sonar | | photo | | 155 | -35.8297957 | 174.5126027 | 2647312 | 6595639 | sonar | | photo | | 156 | -35.8296938 | 174.5121467 | 2647271 | 6595651 | sonar | | photo | | 157 | -35.8282507 | 174.5082629 | 2646923 | 6595817 | sonar | | photo | | 158 | -35.8285941 | 174.5077479 | 2646876 | 6595780 | sonar | | photo | | 159 | -35.8289588 | 174.5071846 | 2646825 | 6595740 | sonar | | photo | | 160 | -35.8293183 | 174.5066321 | 2646774 | 6595701 | sonar | | photo | | 161 | -35.8295489 | 174.5062995 | 2646743 | 6595676 | sonar | photo | |-----|-------------|-------------|----------|---------|--------|----------------| | 162 | -35.8300907 | 174.5055109 | 2646671 | 6595617 | sonar | photo | | 163 | -35.8304501 | 174.5048565 | 2646611 | 6595579 | sonar | photo | | 164 | -35.8304287 | 174.5036709 | 2646504 | 6595583 | sonar | photo | | 165 | -35.8304072 | 174.5034456 | 2646484 | 6595586 | sonar | photo | | 166 | -35.8311636 | 174.5028019 | 2646424 | 6595503 | sonar | photo | | 167 | -35.8313192 | 174.5026732 | 2646412 | 6595486 | sonar | photo | | 168 | -35.8312065 | 174.5019543 | 2646348 | 6595499 | sonar | photo | | 169 | -35.8303643 | 174.5014018 | 2646299 | 6595594 | sonar | photo | | 170 | -35.8297742 | 174.5010048 | 2646265 | 6595660 | sonar | photo | | 171 | -35.829565 | 174.5008063 | 2646247 | 6595683 | sonar | photo | | 172 | -35.8302034 | 174.5015198 | 2646310 | 6595611 | sonar | photo | | 173 | -35.8305789 | 174.5015681 | 2646314 | 6595570 | sonar | recrding piles | | 174 | -35.8302409 | 174.5015144 | 2646310 | 6595607 | sonar | photo | | 175 | -35.8295221 | 174.5008707 | 2646253 | 6595688 | sonar | photo | | 176 | -35.8294148 | 174.4995618 | 2646135 | 6595702 | sonar | photo | | 177 | -35.8288355 | 174.4982958 | 2646022 | 6595768 | sonar | photo | | 178 | -35.8285726 | 174.4976252 | 2645962 | 6595798 | sonar | photo | | 179 | -35.8284707 | 174.4965094 | 2645861 | 6595812 | sonar | photo | | 180 | -35.8275748 | 174.4960749 | 2645823 | 6595912 | sonar | photo | | 181 | -35.8268506 | 174.4958496 | 2645805 | 6595992 | sonar | photo | | 182 | -35.826459 | 174.4957316 | 2645795 | 6596036 | sonar | photo | | 183 | -35.8261211 | 174.4950879 | 2645737 | 6596075 | sonar | photo | | 184 | -35.8253432 | 174.4945192 | 2645687 | 6596162 | sonar | photo | | 185 | -35.8245546 | 174.4938916 | 2645632 | 6596250 | sonar | photo | | 186 | -35.8240343 | 174.4935429 | 2645602 | 6596309 | sonar | photo | | 187 | -35.823471 | 174.493323 | 2645583 | 6596371 | sonar | photo | | 188 | -35.8228649 | 174.4930709 | 2645561 | 6596439 | sonar | photo | | 189 | -35.8296079 | 174.4942671 | 2645656 | 6595689 | sonar | photo | | 190 | -35.8295543 | 174.4949484 | 2645718 | 6595694 | sonar | photo | | 191 | -35.8294953 | 174.4958818 | 2645802 | 6595699 | sonar | photo | | 192 | -35.8294685 | 174.4966167 | 2645869 | 6595701 | sonar | photo | | 193 | -35.8294577 | 174.4974482 | 2645944 | 6595701 | sonar | photo | | 194 | -35.8294148 | 174.4983977 | 2646030 | 6595704 | sonar | photo | | 195 | -35.8293934 | 174.499476 | 2646127 | 6595704 | sonar | photo | | 196 | -35.8293934 | 174.5000285 | 2646177 | 6595704 | sonar | photo | | 197 | -35.829742 | 174.4999909 | 2646173 | 6595665 | sonar | photo | | 198 | -35.8296616 | 174.4987357 | 2646060 | 6595676 | sonar | photo | | 199 | -35.829683 | 174.4977647 | 2645972 | 6595675 | sonar | photo | | 200 | -35.8296938 | 174.4969279 | 2645896 | 6595675 | sonar | photo | | 201 | -35.8297045 | 174.4961232 | 2645824 | 6595675 | sonar | photo | | 202 | -35.8296991 | 174.4953776 | 2645756 | 6595677 | sonar | photo | | 203 | -35.8297045 | 174.4944763 | 2645675 | 6595678 | sonar | photo | | 204 | -35.8296777 | 174.4933283 | 2645571 | 6595683 | sonar | photo | | 205 | -35.8301712 | 174.4932962 | 2645567 | 6595628 | sonar | photo | | 206 | -35.8302141 | 174.4964075 | 2645848 | 6595618 | sonar | photo | | 207 | -35.8307506 | 174.4963807 | 2645845 | 6595559 | sonar | photo | | 208 | -35.830654 | 174.497357 | 2645933 | 6595568 | sonar | photo | | 209 | -35.8305145 | 174.4980705 | 2645998 | 6595582 | sonar | photo | | 210 | -35.8303804 | 174.4988 | 2646064 | 6595596 | sonar | photo | | 211 | -35.8302356 | 174.4996154 | 2646138 | 6595611 | sonar | photo | | 212 | -35.8301658 | 174.500522 | 2646220 | 6595617 | sonar | photo | | -12 | 22.0301030 | 171.300322 | 20 10220 | 0070017 | 501141 | F | # **Appendix 2 Drop Video Data Points** | Wpt | Lat | Long | East | North | Time | Depth | Corrected<br>Depth | Habitat | Notes | |-----|----------------|-----------|---------|------------|-------------|-------|--------------------|------------|----------------------------------------| | 212 | - | 174 5075 | 2646952 | (505(00 | 9:30 | 2.5 | | _ | 1 | | 213 | 35.829409 | 174.5075 | 2646852 | 6595690 | 9:37 | 3.5 | 1.21 | S | sand | | 214 | -35.83001 | 174.50677 | 2646785 | 6595624 | AM | 4.8 | 2.55 | S | sand, small ripples | | 215 | 35.830622 | 174.50683 | 2646789 | 6595556 | 9:44<br>AM | 1 | -1.2 | S | sand | | | | | | | 9:50 | | | | sand, micro algal, | | 216 | -35.82912 | 174.50664 | 2646775 | 6595723 | AM | 1.8 | -0.36 | si | film. (diatoms?) Eckl. on rock, mostly | | | - | | | | 9:56 | | | | sand. Eckl.+ few C. | | 217 | 35.829828 | 174.50555 | 2646675 | 6595646 | AM | 2.5 | 0.39 | smw | flex. | | 218 | 35.830493 | 174.50523 | 2646645 | 6595573 | 10:02<br>AM | 6.3 | 4.23 | S | sand | | | - | | | | 10:09 | | | | red edge, coarse sand, | | 219 | 35.831062 | 174.50498 | 2646621 | 6595510 | AM | 6.1 | 4.09 | r | Eckl., sponges. | | 220 | -35.83141 | 174.50444 | 2646572 | 6595473 | 10:15<br>AM | 7.5 | 5.54 | sr | Eckl. + C. flex. Sand patches | | | - | | | | 10:22 | | | | sand, scattered shells, | | 221 | 35.831711 | 174.50472 | 2646597 | 6595439 | AM<br>10:29 | 12 | 10.1 | S | Patiriella sand, few rock with | | 222 | 35.830853 | 174.5042 | 2646551 | 6595535 | 10:29<br>AM | 6.3 | 4.46 | sr | Eckl. | | 222 | - | 174 50456 | 2646594 | 6505550 | 10:35 | 4.5 | 2.71 | | E 11 . C C | | 223 | 35.830708 | 174.50456 | 2646584 | 6595550 | AM<br>10:42 | 4.5 | 2.71 | smw | Eckl. + C. flex. | | 224 | 35.830359 | 174.50338 | 2646478 | 6595591 | AM | 1.3 | -0.43 | si | sand | | 225 | 35.830418 | 174.50323 | 2646464 | 6595585 | 10:49<br>AM | 1.5 | -0.16 | si | sand | | | - | | | | 10:55 | | | | sand, possible | | 226 | 35.830724 | 174.5031 | 2646452 | 6595551 | AM<br>11:02 | 3 | 1.39 | S | Caulerpa field. | | 227 | 35.830976 | 174.50303 | 2646445 | 6595523 | AM | 5.2 | 3.65 | S | sand | | 228 | -<br>35.831072 | 174.50352 | 2646489 | 6595512 | 11:09 | 7.8 | 6.32 | | sand | | 228 | - | 174.30532 | 2040489 | 0393312 | AM<br>11:15 | 7.8 | 0.32 | S | sand | | 229 | 35.831646 | 174.50291 | 2646433 | 6595449 | AM | 10.7 | 9.27 | S | gravelly sand | | 230 | 35.831244 | 174.50236 | 2646384 | 6595494 | 11:21<br>AM | 6.2 | 4.83 | rcf | C. flex. Forest | | | - | | | | 11:28 | | | | Eckl. forest, sand | | 231 | 35.830166 | 174.49886 | 2646070 | 6595620 | AM<br>11:34 | 7.9 | 6.59 | sr | patches, sponges | | 232 | 35.830482 | 174.49753 | 2645950 | 6595587 | AM | 5.4 | 4.14 | sr | Eckl. sand ?areas | | | - | | | | 11:40 | 40. | | | Deep reef. Sponges. | | 233 | 35.830659 | 174.49758 | 2645953 | 6595567 | AM<br>11:47 | 10.7 | 9.5 | rdl | Low rock Deep reef, sponges, | | 234 | -35.83074 | 174.49759 | 2645954 | 6595558 | AM | 16.2 | 15.06 | rdl | low rock | | 22- | - | 154 10=== | 2617637 | CEC. 22. 1 | 11:54 | 10: | 17.00 | | cobbly, deep reef, | | 235 | 35.830847 | 174.49772 | 2645965 | 6595546 | AM<br>11:02 | 18.4 | 17.32 | cob | rather dark<br>shell gravel, big | | 236 | 35.830987 | 174.49774 | 2645967 | 6595530 | AM | 16 | 14.45 | sg | ripples | | 237 | -<br>35.831282 | 174.49781 | 2645973 | 6595498 | 11:10<br>AM | 15.5 | 14.03 | sg | shell gravel, big<br>ripples | | | - | | | | 11:18 | | | 3 <u>5</u> | | | 238 | 35.831797 | 174.49788 | 2645978 | 6595440 | AM | 15.7 | 14.3 | sg | shell gravel, ripples | | | | | | | | | Corrected | | | |-----|----------------|-----------|---------|-----------|-------------------|-------|-----------|---------|-------------------------------------------| | Wpt | Lat | Long | East | North | <b>Time</b> 11:26 | Depth | Depth | Habitat | Notes | | 239 | 35.832473 | 174.49796 | 2645984 | 6595365 | AM | 18.8 | 17.47 | sg | shell gravel, | | 240 | -<br>35.832419 | 174.4995 | 2646124 | 6595369 | 11:34<br>AM | 17.8 | 16.54 | sg | shell gravel, small bits of rock | | | - | 174 40057 | | | 11:44 | | | | shell gravel, big | | 241 | 35.832403 | 174.49957 | 2646130 | 6595370 | AM | 18.9 | 17.73 | sg | ripples cobbly, probably shell | | 242 | -<br>25 921973 | 174 40654 | 2645957 | CE05 12 1 | 11:52 | 21.2 | 20.1 | | gravel (ss interp. | | 242 | 35.831872 | 174.49654 | 2645857 | 6595434 | AM<br>12:01 | 21.2 | 20.1 | sg | Sand)<br>too dark (ss interp. | | 243 | 35.831378 | 174.4967 | 2645873 | 6595489 | PM | 23.3 | 22.28 | S | Sand) | | 244 | -<br>35.830949 | 174.49677 | 2645879 | 6595536 | 12:09<br>PM | 27.5 | 26.54 | rdl | too dark ( ss interp.<br>Rock) | | | | | | | 12:17 | | | | probably deep reef | | 245 | -35.83081 | 174.49678 | 2645881 | 6595552 | PM<br>12:25 | 20.3 | 19.4 | rdl | (ssinterp. Rock) Ecklonia+ C. flex. | | 246 | 35.830649 | 174.49662 | 2645867 | 6595570 | PM | 10.5 | 9.66 | re | Reef | | | | | | | 12:33 | | | | deep reef , good<br>sponges with Eckl. | | 247 | 35.830241 | 174.49651 | 2645858 | 6595615 | PM | 9.1 | 8.32 | rdh | Higher down wall | | 240 | - | 174 40664 | 0645070 | 6505622 | 12:41 | 6.0 | 6.07 | 11 | deep reef, good | | 248 | 35.830075 | 174.49664 | 2645870 | 6595633 | PM<br>12:50 | 6.8 | 6.07 | rdh | sponges, few Eckl. | | 249 | -35.83008 | 174.49658 | 2645865 | 6595633 | PM | 2.4 | 1.73 | re | Eckl. Forest | | 250 | 35.830064 | 174.4965 | 2645857 | 6595635 | 1:01<br>PM | 13.5 | 12.89 | rdl | deep reef, lowish rock | | 251 | -<br>35.830064 | 174 40625 | 2645942 | 6505625 | 1:40<br>PM | 155 | 15.05 | md1 | deep reef with sandy patches | | 251 | - | 174.49635 | 2645843 | 6595635 | 1:48 | 15.5 | 15.05 | rdl | probably shell gravel- | | 252 | 35.830348 | 174.496 | 2645811 | 6595604 | PM | 21.2 | 20.77 | sg | too dark | | 253 | -<br>35.830429 | 174.49623 | 2645832 | 6595595 | 1:56<br>AM | 24.4 | 24.2 | sg | too dark (ss interp no rock) | | | - | | | | 1:04 | | | | · | | 254 | 35.829823 | 174.49694 | 2645897 | 6595661 | PM<br>2:12 | 7 | 6.41 | sr | Eckl. + sand patches | | 255 | 35.829479 | 174.49682 | 2645887 | 6595699 | PM | 9.5 | 9.1 | S | shelly sand | | 256 | -<br>35.829249 | 174.49676 | 2645882 | 6595725 | 2:20<br>PM | 6.8 | 6.4 | sr | shell gravel + rock<br>patches with Eckl. | | | - | | | | 2:28 | | | | Eckl. Forest. Sand | | 257 | 35.828868 | 174.49639 | 2645849 | 6595768 | PM<br>2:36 | 5.8 | 5.39 | re | nearby rocks with Eckl. + | | 258 | 35.828669 | 174.49648 | 2645858 | 6595790 | PM | 6 | 5.58 | sr | sand. Mixed even. | | 259 | 35.828809 | 174.49588 | 2645804 | 6595775 | 2:44<br>PM | 7.8 | 7.37 | sr | mixed rock + sand,<br>some Eckl. | | 260 | -<br>35.828701 | 174.49528 | 2645749 | 6595788 | 2:52<br>PM | 4.9 | 4.45 | sr | rocks with Eckl. + sand. Mixed even. | | 261 | 35.829731 | 174.4976 | 2645957 | 6595670 | 3:00<br>PM | 1.5 | 1.03 | re | Eckl. | | 262 | 35.829656 | 174.49752 | 2645950 | 6595678 | 3:08<br>PM | 3.5 | 3 | re | Eckl. | | 263 | 35.829431 | 174.49751 | 2645950 | 6595703 | 3:16<br>PM | 7.6 | 7.07 | S | shelly sand, possible<br>Atrina? | | 264 | 35.829726 | 174.49821 | 2646012 | 6595670 | 3:24<br>PM | 3 | 2.43 | rcf | C. flex. forest | | | | | | | | | Corrected | | | |-----|----------------|-----------|---------|---------|------------|-------|-----------|---------|---------------------------------------| | Wpt | Lat | Long | East | North | Time | Depth | Depth | Habitat | Notes | | 265 | 35.829662 | 174.49816 | 2646008 | 6595677 | 3:32<br>PM | 5.5 | 4.89 | re | Eckl. Forest | | 266 | -<br>35.829565 | 174.49811 | 2646003 | 6595688 | 3:40<br>PM | 8.8 | 8.14 | sr | mixed Eckl. On rock,<br>+sand | | 267 | 35.829318 | 174.49834 | 2646025 | 6595715 | 3:48<br>PM | 4.1 | 3.39 | S | cobbly sand? Small weeds | | 268 | 35.829898 | 174.49849 | 2646037 | 6595650 | 3:56<br>PM | 2 | 1.24 | rsmw | mixed C. flex &<br>Ecklonia | | 269 | 35.829876 | 174.49857 | 2646045 | 6595652 | 3:02<br>PM | 4.3 | 3.82 | re | Eckl. Strong current, near reef edge, | | 270 | 35.830085 | 174.49878 | 2646063 | 6595629 | 3:10<br>PM | 6.8 | 6.29 | re | Eckl. Current | | 270 | 33.030003 | 177.77070 | 2040003 | 0373027 | 1 1/1 | 0.0 | 0.27 | 10 | Eckl. Sponges under, | | 271 | -<br>35.830236 | 174.49848 | 2646036 | 6595613 | 3:18<br>PM | 2.6 | 2.06 | re | sweep & juv. Blue maomao. | | 2/1 | - | 177.77070 | 2040030 | 0373013 | 3:27 | 2.0 | 2.00 | 10 | sparse Eckl. Sponges | | 272 | 35.830397 | 174.49822 | 2646011 | 6595595 | PM | 6.1 | 5.51 | re | under | | | | | | | 3:35 | | | | sponge garden. Low rock with some | | 273 | 35.830616 | 174.49801 | 2645992 | 6595571 | 5:55<br>PM | 15.5 | 14.87 | rdl | sediment | | | | | | | 3:43 | | | | | | 274 | -35.83082 | 174.49827 | 2646015 | 6595548 | PM | 12.1 | 11.43 | sg | shell gravel | | 275 | 35.831266 | 174.49878 | 2646060 | 6595498 | 3:51<br>PM | 14.7 | 13.98 | sg | shell gravel | | | - | | | | 3:59 | | | | | | 276 | 35.830048 | 174.49947 | 2646125 | 6595632 | PM<br>4:06 | 4 | 3.22 | S | sand | | 277 | 35.830198 | 174.49934 | 2646113 | 6595615 | 4.00<br>PM | 3.7 | 2.87 | s | shelly sand | | | - | | | | 4:15 | | | | | | 278 | 35.830338 | 174.50036 | 2646205 | 6595598 | PM<br>4:23 | 4.2 | 3.31 | S | sand | | 279 | 35.830697 | 174.50037 | 2646206 | 6595558 | PM | 7.3 | 6.34 | S | sand, ripples | | 280 | -<br>35.831105 | 174.50117 | 2646277 | 6595512 | 4:31<br>PM | 14.7 | 13.68 | | (ssinterp. Something) | | 200 | 33.631103 | 174.30117 | 2040211 | 0393312 | I IVI | 14.7 | 13.00 | | mixed rock + | | • | - | .= | | | 4:40 | | | | sediment,C. | | 281 | 35.830949 | 174.50152 | 2646309 | 6595529 | PM<br>4:50 | 17.6 | 16.5 | sr | flex.forest)<br>mixed rocck + | | 282 | 35.831035 | 174.50151 | 2646308 | 6595519 | 4:50<br>PM | 10.3 | 9.12 | sr | sediment | | 283 | -<br>35.829865 | 174.5012 | 2646282 | 6595649 | 5:20<br>PM | 1.5 | 0.05 | 6 | ( s/s interp. Seagrass?) | | 203 | - | 174.3012 | ZU4UZ0Z | 0373047 | 5:06 | 1.3 | 0.03 | S | mixed rock + | | 284 | 35.830069 | 174.50082 | 2646247 | 6595627 | PM | 5.1 | 3.77 | sr | sediment) | | | | | | | | | | | ( s/sinterp. Mixed rock +sediment, | | | - | | | | 5:30 | | | | cobble/gravel + some | | 285 | 35.829479 | 174.50071 | 2646238 | 6595693 | PM | 1.3 | -0.24 | sr | algae) |